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Abstract

This paper addresses a longstanding problem of analyzing group
inequality: when the outcome is continuous but only observed with a binary
indicator, the parameters of conventional binary regression models are under-
identified. The objectives of this paper are to (1) nontechnically expose the
fact that the conventional solution to the identification problem actually
results in arbitrary rescaling across models, (2) point out a systematic bias in
the estimates of conventional binary regression programs, (3) propose a
simple way to implement the Winship-Mare solution, (4) emphasize the
parallels between standard and binary regression modeling when analyzing
group inequality in a continuous outcome, and (5) present concrete examples
of the analysis of group inequality in which a direct comparison of parameters
across models is necessary and ignoring under-identification would have
serious consequences. Using data from the 1998 General Social Survey of
the United States and the 1993 Taiwan Social Change Survey, this paper
presents numerical examples from the study of group differentials in
occupational achievement (whether a job has high prestige) and school tracks
(academic versus vocational schools). The substantive conclusions can be

drastically different depending critically on the identifying assumption used.

Key Words: Latent variable, logit, probit, group inequality.



Taiwanese Journal of Sociology No. 28 233

A. Introduction

Group inequality is central to the voluminous literature on stratification.
Gender and ethnic inequality, for instance, are two of the most enduring
themes of stratification research in the East and West (Grusky 1994). The
study of group stratification often entails the measurement of group
differences in behavior, achievement, and other outcomes. The outcome is
usually interval scale. But often times the outcome is binary. For instance,
men and women have distinctly different labor force participation behavior.
Children of broken families are more likely than children of intact families to
drop out of school. Ethnic groups have different probabilities for attending
public universities or becoming medical doctors. All these binary outcomes
are significant indicators of the current and future levels of socioeconomic
achievement.

When the dependent variable is binary, the method of OLS regression is
inappropriate (see, e.g., Long 1997). For the past two decades, logit and
probit models are frequently used by sociologists in modeling binary
outcomes. For the purpose of this paper, binary regression models are
restricted to the logit or probit models (Winship and Mare 1983). The
widespread availability of computing power and sophisticated-yet-friendly
statistical software has made regression analysis of binary data as routine as
OLS regression.

However, the technical ease of applying binary regression models has a
hidden trap that will be the focus of this paper. Binary regression models
often have to solve the problem of identification that essentially invalidates

any direct comparison of coefficients across models. A naive application of
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binary regression models that overlooks the problem can lead to misguided
results and conclusions (Cameron and Heckman 1998). Unfortunately, rarely
do authors of published articles take heed of the problem. Many users of
binary regression models do not seem to be aware of the consequences of the
identification problem.

The problem is especially prominent in the analysis of group inequality.
The most common analytic task for a study of group inequality is to
decompose a group difference into its sources. The task 1s pervasive in the
study of, for instance, gender and racial gaps in wages and educational
attainment. But this task requires the direct comparison of parameters across
models.! When the dependent variable is observed and continuous, the
procedure is well understood and routinely implemented in the best
quantitative literature of sociology and economics. By contrast, the problem
of identification looms large when the continuous outcome variable is
unobserved but measured with a discrete indicator - as in logit or probit
models. The problem musf be resolved before a researcher can carry out the

most basic and common analytic task in the study of group inequality.

' It should be emphasized that a common practice in the literature is to compare the
statistical significance levels associated with an estimated effect across different models in
an attempt to assess if a group differential can be explained by the inclusion of some
explanatory variables. For instance, if the gender wage gap is significant in one model but
insignificant after a set of variables are added, the conventional interpretation is that these
variables successfully account for the gender gap. Tam (2001) shows that this is a
dangerous and uninformed interpretation even when the dependent variable is continuous

and observed, and it does not address the need to decompose the gender gap.
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Fortunately, a solution has been available since the 1980s (Winship and
Mare 1983). The solution can effectively address the identification problem
and the analytic requirements of analyzing group inequality. In other words,
the solution allows meaningful comparison of parameters across models
based on the same data. Unfortunately, the solution has almost never been
used. Indeed, the ramifications of the identification problem are poorly
understood and, most significant, widely overlooked. While sophisticated
methodologists find it too obvious to write a paper on the problem and
solution, the social science community is generally ignorant about the
problem and its ramifications. There is simply nothing in the literature that
pays serious attention to the problem and helps social scientists firmly
understand its ramifications.

This paper is designed to fill this void. It is founded on the three basic
ideas mentioned above: the problem of identification is a mathematical truth,
comparing parameters across models is a relevant task (indeed essential for
many substantive contexts), and the Winship-Mare proposal is a sound
solution. All three ideas are firmly established knowledge that can withstand
any scrutiny. Building on these ideas, (1) I offer an original and nontechnical
exposition of the fact that, when there is a latent variable interpretation for a
binary regression model, the conventional solution to the identification
problem would lead to arbitrary rescaling across models, (2) point out a
systematic bias in the estimates of conventional binary regression programs,
(3) propose a simple way to implement the Winship-Mare solution, (4)
emphasize the parallel between standard and binary regression modeling

when analyzing group inequality in a continuous outcome, and (5) present
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concrete examples of analyzing group inequality in which the direct
comparison of parameters across models is necessary and ignoring under-
identification would have serious consequences.

The rest of this paper is organized as follows. Section B provides a non-
technical view of the problem of identification and its solution and introduces
the first four original contributions of the paper. Section C presents two
heuristic examples of the quantitative consequences of ignoring this problem
in the study of education and stratification. The first example is concerned
with the role education plays in explaining the racial gap in holding high
status occupations in the United States. The second example is concerned
with the gender and ethnic gaps in getting access to the academic track of

schooling in Taiwan. Section D concludes the paper.

B. Modeling Unobserved Outcomes

The statistical modeling of binary data is already well covered in the
literature (see, e.g., Winship and Mare 1983; Long 1997). The most common
starting point is the postulate of a latent (unobserved) continuous variable y*
as the theoretical dependent variable of interest. A second postulate is that y*
is a function of independent variables, collectively denoted by the matrix X,
and /5 is a vector of effect parameters. That is,
[My*=X /£ +u
where u denotes omitted variables and E(ulX)=0. The latent outcome y* is
related to an observed binary indicator y with the following straightforward
rule for each observation i:
[2]y;=1 1f O <y}

= 0 otherwise.
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This latent variable approach conceives of binary regression models as
an analog of classical regression models for observed continuous dependent
variables. The approach is remarkably general and the latent variable
encompasses a great variety of concepts.> The concepts may be difficult to
precisely measure but in principle measurable. They may also be inherently
unobservable but can be indirectly measured with a binary indicator. In any
event, the latent variable interpretation is applicable to a wide variety of

contexts in which binary regression models are used.

1. Problem of Identification

A distributional assumption for u is necessary for estimating the
parameter vector 5. The conventional options include the normal and the
logistic distribution, resulting in the probit and the logit model, respectively.
Although most sociological applications adopt the logit model, the
substantive results from the two models should be very similar because the
two distributions closely resemble each other (Long 1997:43).3 As a result,

the illustrative empirical examples in the next section will only report results

2 Winship and Mare (1983) discuss a variety of conceptual models that can be
appropriately represented within the latent variable framework.

3 Both the normal and logistic distributions are completely defined by two parameters
(mean for location and standard deviation for shape), with the mean ( #,) and standard
deviation ( 0,) of each distribution explicitly entering the pdf and cdf. The parameter
estimates under either model are very similar in size if comparable scale assumptions are
made (see, e.g., Long 1997). But programming is much simpler for the logit model than

for the probit model.
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based on the logit model -- the most commonly used model in sociological
research.

Just as in the case of standard regression for an observed continuous
variable, the parameter vector /5 depends on the scale of the latent dependent
variable y* (Winship and Mare 1983:74; Long 1997:47). Indeed, model [1]
will fit the data exactly the same if we multiply y* by any nonzero constant
such as 100. The consequence of the change in the dependent variable is
simply a new parameter that is a multiple of the original, such as 100 3.
However, unlike the case of standard regression, the dependent variable of
model [1] is not observed, its scale is unidentifiable, so is the scale of 5. For
a probit or logit model, both scales cannot be determined by data. In other
words, we must arbitrarily choose a positive variance for u in order to fix the
scale of the key parameters of interest without affecting the goodness of fit
between a binary regression model and the data. This is the fundamental
problem of scale identification intrinsic to any binary regression model for a
continuous latent dependent variable. The conventional solution is to adopt
an identifying assumption that offers the most convenient mathematical form
for the purpose of writing program codes:

[3a] #,=0,and o, =1 if u follows the normal distribution (the probit case),
[3b] u,=0,and o, =7 /v/3 if u follows the logistic distribution (the logit case).
Assumptions [1]-[3] define the results from the standard probit or logit model

as implemented in all common statistical packages (such as SPSS, SAS, and

STATA).#

4 The conventional results may also be interpreted as the parameter estimates for a family
of nonlinear probability models that does not postulate the presence of a latent variable y*

(see, e.g., Long 1997).
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2. Arbitrary Rescaling and Systematic Bias

However, rarely recognized is the fact that the conventional identifying
assumption [3] is consequential for substantive interpretation. The
assumption gives rise to the problem of incomparable coefficients across
models for the same data. As will be explained, the reason is that the
assumption results in the arbitrary rescaling of all coefficients across models.
Understanding why this is the case is crucial to solving the problem of
incomparability.

It is instructive to consider the familiar case of OLS regression for an
observed dependent variable y. Two preliminary facts should be noted. First,
in a model with an independent variable X, part of y’s variance would be
explained by X;. When a second model is estimated with the addition of
another independent variable X,, the variance explained necessarily gets
higher. That means the variance of the residual u is necessarily reduced.
Second, the estimated effect of any independent variable is partly determined
by the scale of the dependent variable.” If the scale of the same dependent
variable changes between two estimation runs of the same data and model,
the coefficients of the same independent variable would differ across runs
because the metrics of the dependent variable is different for the two runs.
We should not compare the coefficients of any variable across models when

the dependent variable takes on incompatible metrics in different models.

5 An exception is when the dependent variable y is the logarithm of a positive-valued
variable z. In this case, the effect of an independent variable is invariant to any rescaling
of z. Only the intercept of a linear model for y will be affected by the rescaling of z.

6 For instance, for the same data, if you fit a model to the data using USD to code salary



240 Tony Tam Analyzing Group Inequality

What would the conventional identifying assumption for binary
regression models do in the OLS case? If someone imposes the unit variance
constraint on the residual of an OLS regression model, the consequence is
obvious. As the actual residual variance shrinks with the addition of more
variables, the estimated variance (i.e., the scale relative to that of u) of the
latent dependent variable would rise. The scale of the dependent variable will
increase -- whenever its explained variance increases -- only because by
constraint the residual variance is set to unity in all models.

An Important Analogy. A heuristic numerical example from a standard
regression model would help fix ideas. Suppose we estimate the gross gender
wage gap and then fit a conventional human capital earnings model to see
how well human capital differences explain the gender gap. The results (with
standard errors in parentheses) are as follows:

[4a] Lwage =5.45 - .15 Wom + ¢,

(.15) (.09) N R2= .02
[4b] Lwage = 4.61 - .13 Wom + .09 Educ + .08 Exp - .12 Exp%100 + e,
(.06) (.05) (.01) (.0D) (.02) R2= 40

where Lwage stands for the logarithm of observed wages, Wom is a dummy
variable with 1 for woman, Educ is years of schooling, Exp is years of
working experience, and e is the residual. The coefficients of the two models
are comparable in the sense that the parameters are defined on the same

metrics for the dependent variable. The two models have very different

and you fit the same model to the same data but now using NTD to code salary, you are

bound to get different coefficients and the coefficients cannot be directly compared.
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residual variances (o'2). The unexplained proportion of variances are 98
percent and 60 percent for models [4a] and [4b], respectively. Assuming that
the variance of log-wage is 4 in the sample. Then the residual variance for
model [4a] is 4*.98=3.92, implying a standard deviation of 0,=1.98.
Similarly, the standard deviation of the residual for model [4b] is 1.55.
Consider now the consequences of fixing the residual variance to be
constant and, without loss of generality, fixed at unity across all models. This
constraint is equivalent to dividing the residual by o, to get a new
standardized residual v; 02 is one for all models. In practice, the
standardization amounts to multiplying every term on both sides of eq. [4a]
and [4b] with constants ¢,=1/0,=1/1.98=.51 and c,=1/0,=1/1.55=.65,
respectively. The fit of each model stays the same. The ratios of the
coefficients within the same model are identical before and after the
multiplication. The parameter estimates under the residual unit variance
assumption would be as follows:
[4c] c;*Lwage = 2.753 - .076 Wom + v,
[4d] c,*Lwage = 2.974 - .084 Wom + .058 Educ + .052 Exp - .077 Exp%100 + v,
Note that the scale of the dependent variable has to be changed even if those
of the independent variables remain the same. Also note that the ratios of the
corresponding coefficients in [4a] and [4b] are no longer comparable to those
of the corresponding coefficients in [4c] and [4d]. For instance, whereas the
gross gender gap in [4a] is larger than the one in [4b] after controlling for
human capital differences, the gender gap in [4c] is smaller than the one in
[4d].

In sum, irrespective of the variance assumption imposed on v, the scale
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of the dependent variable is artificially altered (i.e., rescaled) from model to
model even when the same concept and data are being analyzed in all the
models. The scale adjustment does not affect the fit of a model, but it does
affect the scale of b - the estimator for 5. In fact, the rescaling produces a
systematic bias.

Systematic Bias: When the latent variance explained increases, the
estimated scale of the dependent variable will be increased, so will the scale
of b. This upward bias on the magnitude of b can generate highly misleading
results for between-model comparisons. Thus the constant residual variance
assumption is a nonsensical restriction: constraining residual variance to be
the same across models is useless and would produce misleading results.

Although the heuristic example is set up for an observed dependent
variable, the same logic applies to the case of an unobserved outcome with a
binary indicator. Whether the dependent variable is observed or not, the
constant residual variance assumption produces the same kind of systematic
impact on the scale of y* and therefore the scale of b, hence the same kind of
incomparability of coefficients would arise. Unfortunately, the same
nonsensical assumption is implicit in all binary regression models that
assumes [3].

Let us return to the heuristic example and replace Lwage with a latent
variable y*. The coefficient of Wom measures the gender gap in y*. Suppose
the gender gap is substantially explained by the human capital variables (X).
The estimated gender gap should drop after X is added to the model for y*.
However, the variance explained of y* would rise as well and the residual

variance would decrease. Under the conventional identifying assumption that
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fixes the residual variance at unity, all other scales would be measured
relative to the residual variance. As the real residual variance declines, the
relative scale of all coefficients will rise and the estimated gender gap may
become large even though the estimated gender gap might have in fact
decreased. The larger the amount of rescaling, the more likely that the
reduction in the gender gap may be overcome by the scaling-up of all

coefficients.

3. The Winship-Mare Solution

Since the source of the incomparability is an artificial rescaling of the
dependent variable across models, the natural solution is to fix the scale of the
dependent variable across models, as is automatically done in standard
regression models. This is precisely what Winship and Mare (1983:74)
suggest when they advocate replacing the sample analog of assumption [3a]
or [3b] by setting the variance of y* (Gzy*) to a constant for all models,’ such
as,
[5] 0%x= 0%, + 0% =1.
The computation implied by [5] is considerably simpler than the formula
suggested by Winship and Mare (1983:74). The term X, is simply predicted
values of y*. This term is simple to generate by all commercial programs for
binary regression.

It is also worth noting that this identifying assumption hinges on the

7 Since y* is a linear function of Xb and e, the variance of y* is a function of those of Xb

and e. Once the variance of e is assumed, the variances of Xb and y* are determined.
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postulate of a meaningful latent variable. Without the notion of an underlying
y*, assumption [5] would be meaningless. With the postulate of an
underlying y*, however, the constancy of variance should apply to y*, not to
the residual term e. After all, the same dependent variable in the same data is
the focus of all the models to be compared. No valid solution should ignore
or violate this basic fact. Indeed, the Winship-Mare solution rests on this fact.
Once made explicit, it is simply hard to think of any alternative as natural as
this one.

Granted assumption [5], then, we can compare coefficients across
different models for the same data and dependent variable, just as we can in
the case of OLS regression. This solution works for binary regression models
based on the normal or logistic distribution. The main precaution is to ensure
that different models are indeed estimated on the same (or virtually the same)
sample. This is not always the case as models with different independent
variables can have very different missing data problems.?

An additional practical advantage is that the size of all effect parameters
can be interpreted in terms of the standard deviation of y*. An effect of 0.5
for any independent variable means that a unit change in the independent
variable would lead to half a standard deviation rise in the expectation of y*
-- the same interpretation for all independent variables and across all models.
Yet another advantage is the availability of a well-defined measure of R-

squared for y*. The variance of the latent error term is equivalent to the

8 1t is therefore a good practice to include only cases with valid data for all models to be

compared.
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variance of y* that is unexplained. To distinguish it from the conventional R-
squared, I call it the Latent R-squared to signify the fact that the new R-
squared applies to the latent dependent variable (y*).

In sum, the seemingly benign technical problem of identification is
consequential in practice. The problem is important because ignoring it could
seriously distort substantive findings and conclusions. Nonetheless, few
researchers take heed of the consequence. Most users are apparently ignorant
of the fact that the coefficients estimated with the conventional identifying
assumption are not directly comparable across models. A good way to drive
home the lesson is to provide numerical examples. Although Winship and
Mare (1983) propose the solution in [5], they do not demonstrate that
potentially misleading results could emerge under the conventional
identifying assumption. Section C will demonstrate the consequences of the
conventional identifying assumption in the context of analyzing group

inequality.

4. Parameters of Interést

The heuristic numerical example of [4] also underscores the fact that
binary regression modeling for unobserved continuous dependent variable
(y*) is fundamentally analogous to standard linear modeling for observed
continuous dependent variable (y). When there is a latent variable
interpretation for a binary regression model, it is a perfectly legitimate
extension (indeed the most natural analog) of the conventional logic of linear
models to regard the linear parameters (/3 ) as the parameters of interest. In

other words, group inequality in a continuous outcome is best summarized by
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the parameter of group difference in the linear model for the continuous
outcome. As will be demonstrated in section C, sources of the group
inequality can be specified by comparing the parameter of group difference
across models. Whenever the latent variable interpretation holds, there is
simply no compelling reason to deviate from the well tested and well
established procedure of analyzing group inequality when the dependent
variable is observed and continuous. Whether the continuous dependent
variable 1s observed (y) or unobserved (y*), the same logic of analyzing
group inequality should be applied.

In this light, the common practice of turning attention to group
differences in the probability of an outcome simply evades (rather than
legitimately substitutes for) the well established procedure of analyzing group
differences based on linear parameters (/3). It is important to recognize that
the effect of an independent variable on the probability of an outcome is a
nonlinear function of all independent variables. In stark contrast to the
simple effect parameters of a linear model, there is no single probability effect
for any independent variable. In lieu of a single effect parameter, the
probability effect of an independent variable is generally an infinite set and
the effect is contingent on the level of all other independent variables (Long
1997:63-64). Practitioners do come up with a variety of conventions to
sidestep this embarrassing complexity. However, the conventions never
change the fact that we will obtain different decomposition of group

inequality depending on the particular probability effect picked.’

% For instance, Cameron and Heckman (1998:281-284) examine in detail the estimation
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This lack of invariance highlights the fact that probability effects in
binary regression are not structural parameters for group inequality. One of
the missions of science is to search for structural explanatory mechanisms.
The usual hallmark of a structural mechanism is that the mechanism is well
captured by a small number of parameters and yet able to generate complex
outcomes. The relationship between a structural model to a set of complex
outcomes is analogous to that between a multiple regression model and a
large number of bivariate correlations among many variables. A binary
regression model for an unobserved continuous dependent variable
potentially represents a structural mechanism. The linear parameters are then
structural parameters. However, if a researcher translates a binary regression
model into the corresponding set of predicted probability effects, the result
would generally be an infinite set of probability effects. These complex
predictions are a big step backward from the parsimony of structural
parameters.

There is an alternative way of understanding the fundamental difficulties
with looking at probability effects. Consider estimating a linear structural
model for an observed continuous dependent variable. We can always specify
a way to dichotomize the dependent variable and derive effects on the

probability of the binary outcome for each independent variable. But

results of educational transitions in which probability effects prove to be an unreliable and
arbitrary basis for comparing effects across contexts. While methodologists may be
content with a mechanical interpretation of a model, social scientists should be concerned
with structural parameters that reflect critical sources of differences. The substantive

problem of analyzing sources of group inequality precisely calls for such a principle.
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everyone would agree that it makes no sense to report these probability
effects instead of the linear effect parameters as a way to characterize the
structural mechanism. If the mechanism has a simple linear structure for the
continuous dependent variable, there is every reason to regard the linear
parameters as structural parameters. Especially when the substantive
question is about the sources of structural group inequality, the linear
parameter of group difference should be the primary reference for analyzing
the sources of group inequality. Similarly for an unobserved continuous
dependent variable, it does not make sense to substitute probability effects for
linear effect parameters. Whether the continuous dependent variable is
observed or unobserved, the same logic of analyzing group inequality should
be applied. To drive home this message, the next section will demonstrate the

logic of analyzing group inequality with two numerical examples.
C. Analyzing Group Inequality

1. High Status Occupations

The first example is a straightforward illustration of how the numerical
results can differ under the conventional and Winship-Mare identifying
assumptions. The analysis draws on a study of American racial differences in
occupational prestige and how the racial gap may be related to educational
attainment and father’s education. For the purpose of illustrating the problem
of comparing across binary regression models, I will analyze the racial gap in
the propensity to attaina high status” job -- a binary outcome variable that

defines a high status job as one with occupational prestige higher than 50.
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When restricting attention to adults of at least 24 years old, the 1998 General
Social Survey (GSS) shows that only 33% of the cases attained high status.'®
Thus these high status jobs in the United States are the top one-third in terms

of occupational prestige.

Table 1. Racial Gap of Access to High Status Occupations in the United
States: GSS 1998 (N=1,841)

A. Conventional Estimates! B. Rescaled Estimates?

Independent Variables (1) (2) (3) (4)
Nonwhite -.613" -.449* -.335* -.209*
(.148) (.162) (.081) (.075)
Years of Schooling .385" .180*
(.025) (.012)
Father’s Education .004 .002
(.014) (.007)
Constant -.486 -6.002 -.266 -2.799
Latent-R? .014 .284

Standard errors in parentheses.

' Panel A: Logit estimates with conventional identifying assumption.
2 Panel B: Logit estimates with Winship-Mare identifying assumption.
* Significant at .05 level.

To assess the sources of the racial gap in attaining high status jobs, I will
have to compare the estimated racial gap across two models.!! The first

model estimates the gross racial gap and the second model estimates the

10 T use the prestige score associated with the occupational code of a respondent based on
the 1980 Census Occupational Classification for the current or the last held job. The
prestige scores in the public release file of the 1998 GSS are appended to the data by the
National Opinion Research Center.

11 All analyses were conducted with Stata 6.0 (StataCorp 1999).
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conditional (net or residual) racial gap after controlling for a respondent’s
years of education and father’s years of education. Two sets of results are
presented in table 1. Panel A presents the white-nonwhite gap in attaining a
high status job, with and without controlling for the educational background
variables. The conventional approach is to directly compare the coefficients
of Nonwhite across columns (1) and (2) and interpret the reduction in the gap
as the extent of the gross gap attributable to racial differences in educational
attainment and parental education. This procedure suggests that 27% of the
gross gap can be explained.!'? Panel B estimates the same models with the
same data but imposes the Winship-Mare identifying assumption. The
estimates of columns (3) and (4) are parallel to those of columns (1) and (2),
respectively. What about the gross gap attributable to racial differences in
educational attainment and parental education? Comparing the coefficients of
Nonwhite across columns (3) and (4) suggests that 38% of the gross gap has
been explained.!> The fraction of the racial gap explained is substantially
higher (38% instead of 27%) than what the conventional procedure suggests.
We can find a hint of the source of the discrepancy by comparing the
Latent R-squared across models - that is, the portion of the variance of the
latent dependent variable that has been explained. The Latent-R? are 1% and
28% for the models in columns (3) and (4), respectively. With the Latent-R?
so vastly different, the coefficients under the conventional and Winship-Mare

assumptions are bound to be quite different. In addition, the impact of the

12.100% X (.6125883 - .4491311)/.6125883
13 100% X (.3353079 - .2094838)/.3353079
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arbitrary rescaling due to the conventional identifying assumption is likely to
be large as well. But the discrepancies are not necessarily just a matter of
degree. The discrepancies sometimes can lead to qualitatively different
conclustons, hence prodilcing misleading results with dire consequences.

This will be illustrated in the next example.

2. School Tracks

The substantive dependent variable of the second analysis is school track
attainment. In Taiwan, educational inequality has at least two dimensions:
quantity and track. Quantity refers to the years of schooling whereas track
refers to the membership in the academic (senior high, university) or
vocational (vocational high, vocational college) systems. For a long time
each track entailed a fairly rigid path of educational development. Switching
track was rare. The empirical analysis here will focus on measuring the
group inequality of academic track attainment, i.e., whether the track is
academic or Voéational. Only graduates of senior high schools, universities,
or graduate schools would be coded one for the binary dependent variable.
Graduates of vocational high schools, vocational colleges, junior high schools
or less would be coded as zero.

Pooling data across two subsamples (each responded to a different
questionnaire with overlapping items) of the 1993 Taiwan Social Change
Survey (TSCS), we can estimate educational inequality between women and
men, and across ethnic groups in Taiwan. The number of valid cases is 3,898,
which turned out to be not large enough for precise estimation. I therefore

derive a modified data set from this sample by expanding the same size ten-
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fold to 38,980. By design, this partially simulated data set retains all the
statistical properties and relationships among the variables in the original

sample.

Table 2. Gender and Ethnic Gaps in Academic Track Attainment in
Taiwan: Modified TSCS 1993 (N=38,980)

A. Conventional Estimates' B. Rescaled Estimates?

Independent Variables (1) (2) (3) 4)
Women -.398* -.463* -.214* -240 *
(.026) (.026) (.014) (.013)
Mainlanders 1.025* 977" 552" 505 *
(.034) (.034) (.018) (.018)
Aborigines -315 -.378* -.169 -196 *
(171) (172) (.092) (.089)
Age -.015 -.008
(.009) (.005)
Age-squared/100 -.032* -.017*
(.010) (.005)
Constant -1.333 -.006 -718 -.003
Latent-R2 077 .357

Standard errors in parentheses.

T Panel A: Logit model with the conventional identifying assumption.

2 Panel B: Logit model with the Winship-Mare identifying assumption.
* Significant at .05 level. ‘

Table 2 presents two panels of estimates on the gender and ethnic
inequality of academic track attainment in Taiwan, without and with control
for age cohort. From preliminary analysis, I find that Fukien and Hakka
Taiwanese are indistinguishable in the analysis. So the estimates in table 2
consider Fukien and Hakka Taiwanese together as a single reference group.
Since aborigines and other ethnic groups are a tiny minority, the empirical

focus would be on Mainlanders versus Taiwanese. The estimates of panel A
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are based on the conventional logit estimates, with identifying assumption
imposed on the variance of the latent error term. After controlling for
nonlinear age cohort effects, the women disadvantage of attaining the
academic track widens by over 16% (from -.398 to -.463) and the Mainlander
advantage over Taiwanese narrows by less than 5% (from 1.025 to 977). In
other words, taking into account differences in the age cohort composition of
different groups, gender inequality is substantially larger than the gross gap
suggests whereas ethnic inequality is slightly smaller than the gross gap
shows.

Panel B of table 2 presents rescaled estimates based on the Winship-
Mare identifying assumption. The contrasts with panel A are interesting.
After controlling for age cohort, the gender gap of panel B widens by about
12% (from -.214 to -.240) while the Mainlander advantage drops by more
than 8% (from .552 to .505). Thus controlling for age cohort composition has
a smaller impact (/2% instead of 16%) on estimated gender inequality but a
larger impact (over 8% instead of less than 5%) on estimated ethnic
inequality than the conventional logit estimates would suggest.

It is well known that educational expansion in Taiwan is a recent
phenomenon. Younger cohorts benefit more from the expansion than do
older cohorts. But the expansion is biased toward the vocational track in the
decades before the 90s. Controlling for age cohort makes a difference for
both the gender and ethnic gaps, but in opposite ways. Because women in the
sample happen to be younger than men are, and women face a disadvantage,
controlling for age widens the gap. Whereas Mainlanders are younger than

Taiwanese because most Mainlanders came to Taiwan after World War II,
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controlling for age can explain away more of the advantage for Mainlanders.
Thus a naive reading of the conventional outputs from logit models may lead
to a substantively different story of how age cohort accounts for the gender

and ethnic gaps in academic track attainment in Taiwan.

D. Conclusion

The problem of unobserved achievement outcomes is basically a
problem of identification inherent to conventional binary regression models --
whether it is the probit or logit model. All available statistical packages adopt
the same identifying assumption. However, the conventional identifying
assumption is anything but benign. In fact, the assumption results in the
awkward situation that the scale of the latent dependent variable is artificially
altered from model to model, even when the sample is identical across
models. The consequence is the incomparability of coefficients across
models, indeed a systematic bias on the reported estimates, and therefore a
fatal trap for researchers studying group inequality through model
comparison. Ignoring the problem would be like insisting on comparing
apples with oranges. In order not to jeopardize the validity of any substantive
inference, the problem of incomparability must be addressed rather than
ignored.

Fortunately, a sound solution is available. The proper solution is to do
what Winship and Mare (1983) advocate, namely, fix the scale for the latent
dependent variable as we always do with OLS regression. This paper has
demonstrated through two empirical examples the numerical consequences of

ignoring the incomparability. The findings are illustrative of how misleading
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a naive reading of the conventional outputs can be. Comparing coefficients
estimated under the conventional identifying assumption is vulnerable to the
systematic bias stemming from the rescaling of the latent dependent variable.
Before any comparison of coefficients across models, it is imperative that all
estimation results be adjusted according to the Winship-Mare identifying
assumption.

It should also be emphasized that the problem of incomparability are not
confined to the substantive context of analyzing group inequality. Most
quantitative studies in sociology and other social sciences would involve
comparing coefficients across models -- much more often than many
researchers think (Tam 2001). The specification of multivariate relationships
among a set of variables usually entails the estimation of multiple
multivariate models and comparing the size of coefficients across different
models. This analytic task is germane to virtually any quantitative theory
building in all substantive areas of research. Therefore it is only prudent that
applications of conventional binary regression models routinely adopt the
Winship-Mare identifying assumption in estimating effect parameters.
Currently no statistical package would offer this option. The Winship-Mare
assumption (condition [5]) must be imposed manually. But this cannot be an
excuse for ignoring the problem. After all, this paper has demonstrated that
the requisite rescaling is not difficult to do and involves only simple

arithmetic.
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